15 research outputs found

    DOOM'd to Switch: Superior Cognitive Flexibility in Players of First Person Shooter Games

    Get PDF
    The interest in the influence of videogame experience on our daily life is constantly growing. “First Person Shooter” (FPS) games require players to develop a flexible mindset to rapidly react to fast moving visual and auditory stimuli, and to switch back and forth between different subtasks. This study investigated whether and to which degree experience with such videogames generalizes to other cognitive-control tasks. Video-game players (VGPs) and individuals with little to no videogame experience (NVGPs) performed on a task switching paradigm that provides a relatively well-established diagnostic measure of cognitive flexibility. As predicted, VGPs showed smaller switching costs (i.e., greater cognitive flexibility) than NVGPs. Our findings support the idea that playing FPS games promotes cognitive flexibility

    To Head or to Heed? Beyond the Surface of Selective Action Inhibition: A Review

    Get PDF
    To head rather than heed to temptations is easier said than done. Since tempting actions are often contextually inappropriate, selective suppression is invoked to inhibit such actions. Thus far, laboratory tasks have not been very successful in highlighting these processes. We suggest that this is for three reasons. First, it is important to dissociate between an early susceptibility to making stimulus-driven impulsive but erroneous actions, and the subsequent selective suppression of these impulses that facilitates the selection of the correct action. Second, studies have focused on mean or median reaction times (RT), which conceals the temporal dynamics of action control. Third, studies have focused on group means, while considering individual differences as a source of error variance. Here, we present an overview of recent behavioral and imaging studies that overcame these limitations by analyzing RT distributions. As will become clear, this approach has revealed variations in inhibitory control over impulsive actions as a function of task instructions, conflict probability, and between-trial adjustments (following conflict or following an error trial) that are hidden if mean RTs are analyzed. Next, we discuss a selection of behavioral as well as imaging studies to illustrate that individual differences are meaningful and help understand selective suppression during action selection within samples of young and healthy individuals, but also within clinical samples of patients diagnosed with attention deficit/hyperactivity disorder or Parkinson's disease

    Deep Brain Stimulation of the Subthalamic Nucleus Improves Reward-Based Decision-Learning in Parkinson's Disease

    Get PDF
    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson's disease (PD). We determined computational measures of outcome evaluation and reward prediction from PD patients who performed a probabilistic reward-based decision-learning task. In previous work, these measures covaried with activation in the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that stimulation of the STN motor regions in PD patients served to improve reward-based decision-learning, probably through its effect on activity in frontostriatal motor loops (prominently involving the putamen and, hence, reward prediction). In a subset of relatively younger patients with relatively shorter disease duration, the effects of DBS appeared to spread to more cognitive regions of the STN, benefiting loops that connect the caudate to various prefrontal areas importantfor outcome evaluation. These results highlight positive effects of STN stimulation on cognitive functions that may benefit PD patients in daily-life association-learning situations

    A Tribute to Charlie Chaplin: Induced Positive Affect Improves Reward-Based Decision-Learning in Parkinson’s Disease

    Get PDF
    Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson’s disease (PD). We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought to incur transient boosts in midbrain and striatal dopaminergic activity. Computational measures of probabilistic reward-based decision-learning were determined for 51 patients diagnosed with PD. Previous work has shown these measures to rely on the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that induced positive affect facilitated learning, through its effects on reward prediction rather than outcome evaluation. Viewing a few minutes of comedy clips served to remedy dopamine-related problems associated with frontostriatal circuitry and, consequently, learning to predict which actions will yield reward

    Is (poly-) substance use associated with impaired inhibitory control? A mega-analysis controlling for confounders.

    Get PDF
    Many studies have reported that heavy substance use is associated with impaired response inhibition. Studies typically focused on associations with a single substance, while polysubstance use is common. Further, most studies compared heavy users with light/non-users, though substance use occurs along a continuum. The current mega-analysis accounted for these issues by aggregating individual data from 43 studies (3610 adult participants) that used the Go/No-Go (GNG) or Stop-signal task (SST) to assess inhibition among mostly "recreational" substance users (i.e., the rate of substance use disorders was low). Main and interaction effects of substance use, demographics, and task-characteristics were entered in a linear mixed model. Contrary to many studies and reviews in the field, we found that only lifetime cannabis use was associated with impaired response inhibition in the SST. An interaction effect was also observed: the relationship between tobacco use and response inhibition (in the SST) differed between cannabis users and non-users, with a negative association between tobacco use and inhibition in the cannabis non-users. In addition, participants' age, education level, and some task characteristics influenced inhibition outcomes. Overall, we found limited support for impaired inhibition among substance users when controlling for demographics and task-characteristics

    Paired-pulse transcranial magnetic stimulation reveals probability-dependent changes in functional connectivity between right inferior frontal cortex and primary motor cortex during go/no-go performance

    No full text
    The functional role of the right inferior frontal cortex (rIFC) in mediating human behavior is the subject of ongoing debate. Activation of the rIFC has been associated with both response inhibition and with signaling action adaptation demands resulting from unpredicted events. The goal of this study is to investigate the role of rIFC by combining a go/no-go paradigm with paired-pulse transcranial magnetic stimulation (ppTMS) over rIFC and the primary motor cortex (M1) to probe the functional connectivity between these brain areas. Participants performed a go/no-go task with 20% or 80% of the trials requiring response inhibition (no-go trials) in a classic and a reversed version of the task, respectively. Responses were slower to infrequent compared to frequent go trials, while commission errors were more prevalent to infrequent compared to frequent no-go trials. We hypothesized that if rIFC is involved primarily in response inhibition, then rIFC should exert an inhibitory influence over M1 on no-go (inhibition) trials regardless of no-go probability. If, by contrast, rIFC has a role on unexpected trials other than just response inhibition then rIFC should influence M1 on infrequent trials regardless of response demands. We observed that rIFC suppressed M1 excitability during frequent no-go trials, but not during infrequent no-go trials, suggesting that the role of rIFC in response inhibition is context dependent rather than generic. Importantly, rIFC was found to facilitate M1 excitability on all low frequent trials, irrespective of whether the infrequent event involved response inhibition, a finding more in line with a predictive coding framework of cognitive control
    corecore